Atrogin-1 ubiquitin ligase is upregulated by doxorubicin via p38-MAP kinase in cardiac myocytes.

نویسندگان

  • Yasuhiro Yamamoto
  • Yuki Hoshino
  • Takashi Ito
  • Tetsuro Nariai
  • Tomomi Mohri
  • Masanori Obana
  • Nozomi Hayata
  • Yoriko Uozumi
  • Makiko Maeda
  • Yasushi Fujio
  • Junichi Azuma
چکیده

AIMS Doxorubicin (DOX) is one of the most effective anti-neoplastic agents; however, its clinical use is limited by drug-induced cardiomyopathy. The molecular mechanisms responsible for this toxicity remain to be fully addressed. In the present study, we investigated the involvement of atrogin-1, one of the muscle-specific ubiquitin ligases, in DOX-induced cardiotoxicity. METHODS AND RESULTS This method involved intraperitoneal administration of DOX-induced atrogin-1 in the hearts and skeletal muscles of C57BL/6 mice. Consistently, atrogin-1 mRNA was upregulated with DOX treatment in cultured rat neonatal cardiomyocytes. Adenoviral transfer of atrogin-1 induced a reduction in cell size that was ameliorated by the ubiquitin proteasome inhibitor, MG-132. The transduction of constitutively active Akt (caAkt), a serine/threonine protein kinase, inhibited the DOX-mediated induction of atrogin-1. The phosphorylation status of Akt and its downstream target, FOXO, was not affected by DOX. DOX treatment did not activate the atrogin-1 promoter that contains FOXO-binding sites, suggesting that DOX induced atrogin-1 without modulating the Akt/FOXO pathway; importantly, DOX activated p38-mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Furthermore, pharmacological inhibition of p38-MAPK, but not JNK, abrogated DOX-mediated induction of atrogin-1. Finally, adenoviral transfer of caAkt inhibited the DOX-induced p38-MAPK activation. CONCLUSIONS DOX induces atrogin-1 through a p38-MAPK-dependent pathway in cardiac myocytes. Constitutive activation of Akt negatively regulates DOX-mediated atrogin-1 induction by inhibiting p38-MAPK activity as a novel mechanism.

منابع مشابه

Transcriptional Effects of E3 Ligase Atrogin-1/MAFbx on Apoptosis, Hypertrophy and Inflammation in Neonatal Rat Cardiomyocytes

Atrogin-1/MAFbx is an ubiquitin E3 ligase that regulates myocardial structure and function through the ubiquitin-dependent protein modification. However, little is known about the effect of atrogin-1 activation on the gene expression changes in cardiomyocytes. Neonatal rat cardiomyocytes were infected with adenovirus atrogin-1 (Ad-atrogin-1) or GFP control (Ad-GFP) for 24 hours. The gene expres...

متن کامل

Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of Forkhead proteins.

Cardiac hypertrophy is a major cause of human morbidity and mortality. Although much is known about the pathways that promote hypertrophic responses, mechanisms that antagonize these pathways have not been as clearly defined. Atrogin-1, also known as muscle atrophy F-box, is an F-box protein that inhibits pathologic cardiac hypertrophy by participating in a ubiquitin ligase complex that trigger...

متن کامل

Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy.

Cardiomyocyte proteostasis is mediated by the ubiquitin/proteasome system (UPS) and autophagy/lysosome system and is fundamental for cardiac adaptation to both physiologic (e.g., exercise) and pathologic (e.g., pressure overload) stresses. Both the UPS and autophagy/lysosome system exhibit reduced efficiency as a consequence of aging, and dysfunction in these systems is associated with cardiomy...

متن کامل

The NF-κB Inhibitor Curcumin Blocks Sepsis-Induced Muscle Proteolysis

We tested the hypothesis that treatment of rats with curcumin prevents sepsis-induced muscle protein degradation. In addition, we determined the influence of curcumin on different proteolytic pathways that are activated in septic muscle (i.e., ubiquitin-proteasome-, calpain-, and cathepsin L-dependent proteolysis) and examined the role of NF-kappaB and p38/MAP kinase inactivation in curcumin-in...

متن کامل

Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish

Orchestrated protein synthesis and degradation is fundamental for proper cell function. In muscle, impairment of proteostasis often leads to severe cellular defects finally interfering with contractile function. Here, we analyze for the first time the role of Atrogin-1, a muscle-specific E3 ubiquitin ligase known to be involved in the regulation of protein degradation via the ubiquitin proteaso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Cardiovascular research

دوره 79 1  شماره 

صفحات  -

تاریخ انتشار 2008